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Abstract—In this study, we investigate model inversion attacks 
against machine learning models in a black-box setting. On the one 
hand, an adversary can extract feature vectors of samples in a local 
dataset, while the underlying model’s architecture and parameters 
are unknown. On the other hand, the adversary has illegitimate access 
to feature vectors of user data. We thoroughly analyze the following 
two attack scenarios on state-of-the-art models in person re-
identification: recognizing auxiliary attributes and reconstructing user 
data. Extensive experiments show that the adversary could 
successfully infer sensitive information under severe constraints. 
Consequently, we highlight the importance of incorporating an 
encryption scheme when transferring and storing deep features. As 
an alternative to conventional encryption methods such as Advanced 
Encryption Standard (AES), we present a simple yet effective method 
termed ShuffleBits in which the binary sequence of each floating-
point number gets shuffled. It serves as a plug-and-play module that 
is applicable to any neural network, and the model outputs encrypted 
data directly. The source code is available at 
https://github.com/nixingyang/ShuffleBits. 

Index Terms—model inversion attack, black-box, encryption, 
neural network 

I. INTRODUCTION 

Due to the availability of large-scale datasets [1]–[3] and 

affordable computing resources, the field of machine learning 
has witnessed rapid progress over the past decade. Realworld 

applications can be found in everyday life, e.g., targeted 
advertising in online shopping, recommender systems in video 

streaming services, and virtual assistants on smartphones. 
With the widespread adoption of techniques such as person 

reidentification [4]–[9], the concern over security issues can 
not be overemphasized. Since service providers process 

sensitive information from end-users, adversaries might 

misuse user data and compromise user privacy. Accordingly, 
significant efforts have been put into understanding the 

vulnerabilities in machine learning models [10]–[13]. In the 
following paragraphs, we outline four types of attacks that are 

predominant in the literature: adversarial example attacks, 
membership inference attacks, model extraction attacks, and 

model inversion attacks. 

In adversarial example attacks, input data is slightly 
manipulated so that a human may not observe the changes 

while the model would make incorrect predictions [10]. In [14], 
a momentum term is integrated into the iterative process for 

performing attacks, and it stabilizes the direction for updates, 
avoids poor local maxima, and improves the success rate. 
Afterward, Su et al. [15] analyses an extreme case where only 

one pixel can be modified. Perturbation is encoded into an 

array, and the candidate solution is optimized by adopting 
differential evolution. By contrast, He et al. [16] generates an 
ensemble of weak defenses, and the resulting method does 

not always promote resilience to adversarial examples. 

In membership inference attacks, an adversary is interested 
in identifying whether a specific sample is included in a 

model’s training set [11]. Multiple shadow models are trained 
to simulate the target model while the membership in their 

training sets is available [11], [17]. Subsequently, a separate 
threat model is trained on the input-output pairs of the 

shadow models, and it behaves differently depending on 

whether the sample is used for training the target model. In 

[18], the relation between overfitting and membership 
vulnerability has been studied, and results indicate that 

overfitting is a sufficient but not necessary condition for 
membership vulnerability. 

In model extraction attacks, an adversary has black-box 

access to a target model, and the primary objective is to 

duplicate the functionality of the target model [12]. 
Experiments on simple target models show that one could 

train substitute models locally on public datasets with near-
perfect fidelity [12]. Under similar settings, a reinforcement 

learning approach is proposed in [19] to improve sample 
efficiency of queries, and a real-world image recognition 

model was pirated with reasonable performance. Juuti et al. 

[20] design a countermeasure that analyses the distribution of 

consecutive query requests and raises the alarm when 
suspicious activities are detected. Later on, two defense 

strategies are presented in [21]: the first membership 
inference strategy checks whether inputs are outliers, and the 
second watermarking strategy generates wrong outputs 

deliberately for a tiny fraction of queries. 

In model inversion attacks, an adversary intends to infer 
input data from a released model [13]. Fredrikson et al. [22] 

managed to invert a linear regression model and predict the 
patient’s genetic markers based on demographic information. 

With confidence scores returned by a facial recognition model, 

one could recover face images that are representative of a 

specific person in the training set [23]. In the case that only a 
partial prediction vector is returned, truncation is applied to 

feature vectors when training the inversion model in [24]. By 
contrast, Zhang et al. [25] shifts the focus to a whitebox setting 

and theoretically proves that the vulnerability to model 

Ni, Xingyang, Heikki Huttunen, and Esa Rahtu. "On the Importance of Encrypting Deep Features." In Proceedings of 

the IEEE/CVF International Conference on Computer Vision, pp. 4142-4149. 2021. 

https://github.com/nixingyang/ShuffleBits


inversion attacks is unavoidable for models with high 
predictive power. 

Existing studies on model inversion attacks are subject to 
the following limitations: (1) The threat model is trained on the 
same dataset as the proprietary model [26]–[29]; (2) The 

adversary has white-box access to the proprietary model [25], 

[30]; (3) Experiments are limited to small-scale low-resolution 

datasets [23]–[25], [29]. To handle these problems, we 
investigate model inversion attacks in a more practical setting: 

(1) The proprietary dataset is unavailable, and the adversary 
has to collect and utilize a different local dataset; (2) Only a 

blackbox API is provided, while the architecture and 

parameters of the proprietary model are unknown; (3) 

Experiments are conducted on large-scale high-resolution 
datasets with state-ofthe-art proprietary models. In this study, 
our main contribution is twofold: 

• We analyze two attack scenarios while avoiding the 

aforementioned limitations in previous works. Results 
show that it is feasible to recognize auxiliary attributes 

with decent accuracy and reconstruct user data that are 
recognizable. As a result, we give prominence to 

encrypting deep features. 

• Different from conventional encryption methods, we 
propose an alternative scheme termed ShuffleBits. It can 

be implemented as a plug-and-play module inside neural 
networks, and only encrypted data leaves Graphics 

Processing Unit (GPU). 

II. PROPOSED METHOD 

A. Attack scenarios 

Preliminaries. Figure 1 illustrates the background of attack 

scenarios in this study. A server runs a proprietary model 

which is trained on a proprietary dataset, and a response 
containing feature vectors is returned after processing a 

request containing user data. Additionally, the server’s 

responses to the users are intercepted by the adversary, i.e., 

feature vectors of user data are known to the adversary. Since 
the proprietary dataset is unreachable, the adversary collects 

and utilizes a local dataset instead. The purpose is to train a 

threat model that sniffs sensitive information of user data 

from the feature vectors. 

Constraints. Multiple constraints complicate matters for the 

adversary. Firstly, the proprietary model and the threat model 
are trained on different datasets. Since samples from different 

datasets vary in terms of background, weather condition and 

camera angle, the domain gap would degrade performance. 
Secondly, the proprietary model’s internal workings are out of 

reach because the adversary can only access it through a black-
box API. Outputs of intermediate layers in the proprietary 

model are unattainable, and methods such as lateral shortcut 
connections [31] can not be applied. Thirdly, the threat model 

can not be optimized simultaneously with the proprietary 
model since the proprietary model is fixed. It leads to a 

mismatch between the objectives of the proprietary model 
and the threat model, e.g., the proprietary model learns 

representative features for facial recognition while the threat 
model is trained to reconstruct face images. 

 

Fig. 1. Both the users and the adversary have access to the server, in which a 
proprietary model is deployed. Meanwhile, the adversary intercepts the 
server’s responses to the users, and a local dataset is available. 

Recognizing auxiliary attributes. Depending on the proprietary 

model in question, certain auxiliary attributes may be relevant. 

For example, one might be interested in a person’s age and 
gender when using a facial recognition model. Although the 

original task (i.e., recognizing faces) is inherently different 

from the auxiliary task (i.e., predicting age and gender), the 

feature vectors for the original task may still contain relevant 
information for solving the auxiliary task. With a local dataset 

at hand, the adversary could annotate auxiliary attributes and 
construct a predictive model. The multilayer perceptron is 

suitable for solving such multi-label classification problems, 
where each sample is associated with multiple labels. 

Reconstructing user data. One could interpret the whole 
system as an autoencoder. The proprietary model on the 

server is the encoder that maps raw data into feature vectors. 

The adversary builds a decoder that reconstructs raw data 
from feature vectors. The decoder is trained in an 

unsupervised manner, i.e., it does not require a labeled 

dataset. The inputs are feature vectors extracted by the 

proprietary model, and the ground truth outputs are raw data. 
The decoder is optimized with an objective function so that the 

difference between ground truth data and reconstructed data 
is minimized. 

B. ShuffleBits 

In spite of recent studies on binarized neural networks [32], 
[33] which reduce memory consumption and improve 
inference speed, storing weights and activations in the 

singleprecision floating-point format is still the predominant 
option. Each single-precision floating-point value can be 
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viewed as a 32-bit binary sequence (i.e., binary32). The IEEE 
754 standard [34] defines the procedure which converts a real 

number from decimal representation to binary32 format, and 
vice versa. 

Given a single-precision floating-point value x, it can be 

represented as a finite binary sequence 

 (ai)i∈I, (1) 

where ai ∈{0,1}, I = {1,...,n} and n = 32. 
 original value 0.12345 

0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 

0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 

0 encrypted value 2.59252e+36 

0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 

0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 

1 decrypted value 0.12345 

Fig. 2. A specific case of ShuffleBits: a left rotation operation is applied in the 
encryption process, and a right rotation operation is applied in the decryption 
process. 

One could shuffle the original sequence according to an 

encryption key, and the encrypted sequence is 

 (bj)j∈J, (2) 

where J = {1,...,n}. The encryption key is a bijective function f : 
I → J, and it is an injective and surjective mapping of set I to 

set J. In addition, we have bf(i) = ai for i ∈ I. 

Similarly, the decrypted sequence is 

 (ck)k∈K, (3) 

where K = {1,...,n}. The decryption key is another bijective 

function g: J → K which maps set J to set K. Furthermore, we 
have cg(j) = bj for j ∈ J. 

Since f is a bijection, it has an inverse function obtained by 
swapping the inputs and outputs in f. Let g be the inverse 

function of f, we have 

 ai = bf(i) = cg(f(i)) = ci for i ∈ I. (4) 

With the correct decryption key, it is apparent that the 
decrypted sequence is identical to the original sequence. 
Finally, the encrypted sequence and the decrypted sequence 

can be converted to decimal representation. 

Figure 2 provides a step-by-step explanation of the 
proposed scheme using specific encryption and decryption 

keys. The original value’s binary sequence is shuffled according 
to the encryption key, and the encrypted sequence 

corresponds to the encrypted value. By contrast, modifications 
are reverted so that the decrypted value is the same as the 

original value. 

In the event of a brute-force attack, the adversary must 

systematically enumerate all possible decryption keys and 

check each of them. It is computationally infeasible to conduct 
exhaustive key search for the following reasons. Firstly, there 

are 32! ≈ 2.63e+35 unique keys. Thus the number of 
candidate keys is large. Secondly, it is not straightforward to 

validate whether the decrypted values are correct. Lastly, bit 

shuffling provides a one-time pad system in which the 

encryption keys in each request differ. 

 

 Fig. 3. The balanced accuracies of each auxiliary attribute. 

III. EXPERIMENTS 

A. Background 

Domain. We conduct experiments in the domain of person re-

identification, in which the objective is to retrieve a person of 
interest across multiple cameras [7]. 

Datasets. We select the following datasets that are widely 

used in recent works: Market-1501 [1], DukeMTMC-reID [2] 
and MSMT17 [3]. Each dataset has three partitions, namely, 

training set, query set, and gallery set. The latter two sets are 
merged as the test set. Throughout this study, we use 

MSMT17 as the proprietary dataset, while the local dataset is 

either Market-1501 or DukeMTMC-reID. 

Models. The FastReID repository provides an unified instance 
re-identification library, along with a set of pre-trained models 

[8]. We include three top-performing methods which are built 
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using the ResNet50 [35] backbone, namely, BoT [6], AGW [7] 
and SBS [8]. 

B. Recognizing auxiliary attributes 

Model. For each auxiliary attribute, batch normalization [36] 

layers and fully connected layers are stacked to obtain the 

probabilities for each class. Similar to the proprietary models 

that classify person identities, we use only one batch 
normalization layer and one fully connected layer. Opting for 
this structure gives the best results in our experiments. 

Loss function. The cross-entropy loss [37] is utilized to solve 
classification problems. Given an imbalanced dataset with 
unequal distribution of classes, classifiers would be biased in 

favor of the dominant classes. To address this issue, we assign 
a scalar value to each class during training so that more 

attention is paid to the under-represented classes [38]. The 
class weights are inversely proportional to the count number 

of occurrences of each class. 

Evaluation metric. Conventional accuracy score measures the 

percentage of samples in which the predicted label matches 
the corresponding ground truth. However, it may give inflated 

performance estimates on imbalanced datasets. Thus, we 
adopt balanced accuracy [39] which is a better option, and it 
reports the average of recall calculated on each class. 

Analysis. We leverage the auxiliary attributes in [5], and these 
annotations provide detailed local descriptions of pedestrians. 
Multiple labels are present while each label corresponds to a 

binary or multiclass classification problem. Figure 3 visualizes 
the balanced accuracies of each auxiliary attribute in two local 

datasets. Using feature vectors extracted by proprietary 
models yields significantly more accurate classifiers than 

guessing randomly. 

C. Reconstructing user data 

Model. Two sub-models are involved in reconstructing user 

data, and we utilize the generator and discriminator, which 
share similar architecture to the BigGAN [40] work. On the one 

hand, the generator maps feature vectors extracted by a 
proprietary model to images. Two fully connected layers 
followed by a reshaping operation generate the smallest 

feature maps, and five upsampling residual blocks increase the 
size to the target resolution. The last convolutional layer 

reduces the number of channels to 3, and the resulting 
predictions are in RGB color space. On the other hand, the 

discriminator classifies whether the images are original or 

synthetic. Five downsampling residual blocks with a global 

average pooling operation generate feature vectors of the 
images. Complemented with the feature vectors extracted by 

the proprietary model, a fully connected layer estimates the 
probabilities based on the concatenated feature vectors. 

Loss function. The generator can be optimized with a weighted 

sum of the following loss functions: (1) The pixel loss [41] 
calculates the mean squared error between the ground truth 

images and the reconstructed images; (2) Given a pretrained 

 
 (a) Samples from the test set in Market-1501. (b) Samples from the test set in DukeMTMC-reID. 

 Fig. 4. Comparison of the reconstructed images using different proprietary models, local datasets, and loss functions. 



model, one may extract an intermediate layer’s outputs as 
feature maps. The feature reconstruction loss [41] refers to 

the mean squared error between the feature maps of the 
ground truth images and the reconstructed images. More 

specifically, we use the outputs of layer ”conv2 block3 out” in 
a ResNet50 [35] model which is pre-trained on ImageNet [42]; 

(3) The adversarial loss [43] measures how well the generator 
can fool the discriminator when feeding the outputs of the 

generator to the discriminator. By contrast, the discriminator 
is trained using the mean squared error loss proposed in [44]. 

Compared with the cross-entropy loss [37], it suppresses the 
vanishing gradients problem and stabilizes the learning 

process. 

Evaluation metric. For each reconstructed image, the ground 

truth image is available. Instead of comparing these images 
pixel by pixel, we extract the reconstructed images’ feature 
vectors using the same proprietary model and calculate the 

cosine distance between each feature vector pair. Note that 

the cosine distance metric is widely used when comparing two 

feature vectors in the inference procedure of person 
reidentification models. If the reconstruction is identical to the 

ground truth, it gives the minimum cosine distance 0. 
Additionally, comparing the cosine distance scores gives 

meaningful insights only if the proprietary model is the same, 
i.e., one can not compare reconstructions generated from 

different feature embeddings. 

Analysis. Due to the constraints listed in Section II-A, it is 

challenging to reconstruct user data precisely. Figure 4 
illustrates the reconstructed images under various settings. 
Using the pixel loss gives blurry predictions. Switching to the 

feature reconstruction loss sharpens the images, while 
noticeable checkerboard artifacts can be observed. 

Nevertheless, such artifacts can be suppressed significantly by 
adding the adversarial loss, and the reconstructed images 

share strong similarities with the ground truth images. 
Additionally, combining the feature reconstruction loss and 

the adversarial loss results in the lowest cosine distance score 
between feature vectors of the ground truth images and the 

reconstructed images. 

D. Importance of encrypting deep features 

Results in Section III-B and III-C demonstrate that an 

adversary could successfully infer sensitive information under 
severe constraints. More specially, we manage to recognize 

auxiliary attributes with decent accuracy and reconstruct user 
data that are recognizable. In the presence of an encryption 

scheme, one has to include an encryption key in each request, 
and feature vectors in the corresponding response are 

encrypted (see Figure 1). Since the decryption key is being kept 
on the client side, the original values can be recovered without 

changes. The adversary could still train threat models on 
original feature vectors. However, the decryption key required 

to decrypt feature vectors of user data is unknown to the 
adversary, and threat models would not generate meaningful 

predictions on encrypted feature vectors. Note that the users 
and the adversary are using different encryption keys, and 

such encryption keys may vary in each request. Therefore, 
training threat models directly on encrypted feature vectors is 

not an option. 

While AES [45] is widely accepted as the de facto standard 
for symmetric-key algorithms, the security of ShuffleBits is yet 
to be validated. The following three characteristics of 

ShuffleBits can be observed. Firstly, computations in 
ShuffleBits are inherently operations on tensors. As a result, it 

can be integrated into any neural network as a plug-and-play 
module without extra dependencies. Secondly, a model with 

ShuffleBits would output encrypted data directly, and only 

encrypted data leaves GPU. It reduces the risk of exposing 

unencrypted data. Thirdly, ShuffleBits can be seamlessly 

applied alongside conventional encryption methods. An 

adversary has to break all the encryption algorithms to get 
useful information, and such cascade encryption pipeline leads 

to better security. 

IV. CONCLUSION 

This study emphasizes the importance of encrypting deep 

features in the case of deploying machine learning models. 

Without a proper encryption scheme when transferring and 

storing deep features, an adversary could recognize auxiliary 
attributes and reconstruct user data, thus breaching user 
privacy. Additionally, we introduce the ShuffleBits method, 

which can be implemented as part of neural networks, and 
only encrypted data leaves GPU. A natural extension of this 

study would be to develop dedicated attacks against 
ShuffleBits from the perspective of cryptography. 
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