
On the Importance of Encrypting Deep Features

Xingyang Ni
Tampere University

Tampere, Finland

xingyang.ni@tuni.fi

Heikki Huttunen

Visy Oy

Tampere, Finland

heikki.huttunen@visy.fi

Esa Rahtu

Tampere University

Tampere, Finland

esa.rahtu@tuni.fi

Abstract—In this study, we investigate model inversion attacks
against machine learning models in a black-box setting. On the one
hand, an adversary can extract feature vectors of samples in a local
dataset, while the underlying model’s architecture and parameters
are unknown. On the other hand, the adversary has illegitimate access
to feature vectors of user data. We thoroughly analyze the following
two attack scenarios on state-of-the-art models in person re-
identification: recognizing auxiliary attributes and reconstructing user
data. Extensive experiments show that the adversary could
successfully infer sensitive information under severe constraints.
Consequently, we highlight the importance of incorporating an
encryption scheme when transferring and storing deep features. As
an alternative to conventional encryption methods such as Advanced
Encryption Standard (AES), we present a simple yet effective method
termed ShuffleBits in which the binary sequence of each floating-
point number gets shuffled. It serves as a plug-and-play module that
is applicable to any neural network, and the model outputs encrypted
data directly. The source code is available at
https://github.com/nixingyang/ShuffleBits.

Index Terms—model inversion attack, black-box, encryption,
neural network

I. INTRODUCTION

Due to the availability of large-scale datasets [1]–[3] and

affordable computing resources, the field of machine learning
has witnessed rapid progress over the past decade. Realworld

applications can be found in everyday life, e.g., targeted
advertising in online shopping, recommender systems in video

streaming services, and virtual assistants on smartphones.
With the widespread adoption of techniques such as person

reidentification [4]–[9], the concern over security issues can
not be overemphasized. Since service providers process

sensitive information from end-users, adversaries might

misuse user data and compromise user privacy. Accordingly,
significant efforts have been put into understanding the

vulnerabilities in machine learning models [10]–[13]. In the
following paragraphs, we outline four types of attacks that are

predominant in the literature: adversarial example attacks,
membership inference attacks, model extraction attacks, and

model inversion attacks.

In adversarial example attacks, input data is slightly
manipulated so that a human may not observe the changes

while the model would make incorrect predictions [10]. In [14],
a momentum term is integrated into the iterative process for

performing attacks, and it stabilizes the direction for updates,
avoids poor local maxima, and improves the success rate.
Afterward, Su et al. [15] analyses an extreme case where only

one pixel can be modified. Perturbation is encoded into an

array, and the candidate solution is optimized by adopting
differential evolution. By contrast, He et al. [16] generates an
ensemble of weak defenses, and the resulting method does

not always promote resilience to adversarial examples.

In membership inference attacks, an adversary is interested
in identifying whether a specific sample is included in a

model’s training set [11]. Multiple shadow models are trained
to simulate the target model while the membership in their

training sets is available [11], [17]. Subsequently, a separate
threat model is trained on the input-output pairs of the

shadow models, and it behaves differently depending on

whether the sample is used for training the target model. In

[18], the relation between overfitting and membership
vulnerability has been studied, and results indicate that

overfitting is a sufficient but not necessary condition for
membership vulnerability.

In model extraction attacks, an adversary has black-box

access to a target model, and the primary objective is to

duplicate the functionality of the target model [12].
Experiments on simple target models show that one could

train substitute models locally on public datasets with near-
perfect fidelity [12]. Under similar settings, a reinforcement

learning approach is proposed in [19] to improve sample
efficiency of queries, and a real-world image recognition

model was pirated with reasonable performance. Juuti et al.

[20] design a countermeasure that analyses the distribution of

consecutive query requests and raises the alarm when
suspicious activities are detected. Later on, two defense

strategies are presented in [21]: the first membership
inference strategy checks whether inputs are outliers, and the
second watermarking strategy generates wrong outputs

deliberately for a tiny fraction of queries.

In model inversion attacks, an adversary intends to infer
input data from a released model [13]. Fredrikson et al. [22]

managed to invert a linear regression model and predict the
patient’s genetic markers based on demographic information.

With confidence scores returned by a facial recognition model,

one could recover face images that are representative of a

specific person in the training set [23]. In the case that only a
partial prediction vector is returned, truncation is applied to

feature vectors when training the inversion model in [24]. By
contrast, Zhang et al. [25] shifts the focus to a whitebox setting

and theoretically proves that the vulnerability to model

Ni, Xingyang, Heikki Huttunen, and Esa Rahtu. "On the Importance of Encrypting Deep Features." In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pp. 4142-4149. 2021.

https://github.com/nixingyang/ShuffleBits

inversion attacks is unavoidable for models with high
predictive power.

Existing studies on model inversion attacks are subject to
the following limitations: (1) The threat model is trained on the
same dataset as the proprietary model [26]–[29]; (2) The

adversary has white-box access to the proprietary model [25],

[30]; (3) Experiments are limited to small-scale low-resolution

datasets [23]–[25], [29]. To handle these problems, we
investigate model inversion attacks in a more practical setting:

(1) The proprietary dataset is unavailable, and the adversary
has to collect and utilize a different local dataset; (2) Only a

blackbox API is provided, while the architecture and

parameters of the proprietary model are unknown; (3)

Experiments are conducted on large-scale high-resolution
datasets with state-ofthe-art proprietary models. In this study,
our main contribution is twofold:

• We analyze two attack scenarios while avoiding the

aforementioned limitations in previous works. Results
show that it is feasible to recognize auxiliary attributes

with decent accuracy and reconstruct user data that are
recognizable. As a result, we give prominence to

encrypting deep features.

• Different from conventional encryption methods, we
propose an alternative scheme termed ShuffleBits. It can

be implemented as a plug-and-play module inside neural
networks, and only encrypted data leaves Graphics

Processing Unit (GPU).

II. PROPOSED METHOD

A. Attack scenarios

Preliminaries. Figure 1 illustrates the background of attack

scenarios in this study. A server runs a proprietary model

which is trained on a proprietary dataset, and a response
containing feature vectors is returned after processing a

request containing user data. Additionally, the server’s

responses to the users are intercepted by the adversary, i.e.,

feature vectors of user data are known to the adversary. Since
the proprietary dataset is unreachable, the adversary collects

and utilizes a local dataset instead. The purpose is to train a

threat model that sniffs sensitive information of user data

from the feature vectors.

Constraints. Multiple constraints complicate matters for the

adversary. Firstly, the proprietary model and the threat model
are trained on different datasets. Since samples from different

datasets vary in terms of background, weather condition and

camera angle, the domain gap would degrade performance.
Secondly, the proprietary model’s internal workings are out of

reach because the adversary can only access it through a black-
box API. Outputs of intermediate layers in the proprietary

model are unattainable, and methods such as lateral shortcut
connections [31] can not be applied. Thirdly, the threat model

can not be optimized simultaneously with the proprietary
model since the proprietary model is fixed. It leads to a

mismatch between the objectives of the proprietary model
and the threat model, e.g., the proprietary model learns

representative features for facial recognition while the threat
model is trained to reconstruct face images.

Fig. 1. Both the users and the adversary have access to the server, in which a
proprietary model is deployed. Meanwhile, the adversary intercepts the
server’s responses to the users, and a local dataset is available.

Recognizing auxiliary attributes. Depending on the proprietary

model in question, certain auxiliary attributes may be relevant.

For example, one might be interested in a person’s age and
gender when using a facial recognition model. Although the

original task (i.e., recognizing faces) is inherently different

from the auxiliary task (i.e., predicting age and gender), the

feature vectors for the original task may still contain relevant
information for solving the auxiliary task. With a local dataset

at hand, the adversary could annotate auxiliary attributes and
construct a predictive model. The multilayer perceptron is

suitable for solving such multi-label classification problems,
where each sample is associated with multiple labels.

Reconstructing user data. One could interpret the whole
system as an autoencoder. The proprietary model on the

server is the encoder that maps raw data into feature vectors.

The adversary builds a decoder that reconstructs raw data
from feature vectors. The decoder is trained in an

unsupervised manner, i.e., it does not require a labeled

dataset. The inputs are feature vectors extracted by the

proprietary model, and the ground truth outputs are raw data.
The decoder is optimized with an objective function so that the

difference between ground truth data and reconstructed data
is minimized.

B. ShuffleBits

In spite of recent studies on binarized neural networks [32],
[33] which reduce memory consumption and improve
inference speed, storing weights and activations in the

singleprecision floating-point format is still the predominant
option. Each single-precision floating-point value can be

Users

Adversary

Server

Proprietary
Dataset

Local
Dataset

Proprietary
Model

Threat
Model

viewed as a 32-bit binary sequence (i.e., binary32). The IEEE
754 standard [34] defines the procedure which converts a real

number from decimal representation to binary32 format, and
vice versa.

Given a single-precision floating-point value x, it can be

represented as a finite binary sequence

 (ai)i∈I, (1)

where ai ∈{0,1}, I = {1,...,n} and n = 32.
 original value 0.12345

0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1

0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1

0 encrypted value 2.59252e+36

0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0

0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1

1 decrypted value 0.12345

Fig. 2. A specific case of ShuffleBits: a left rotation operation is applied in the
encryption process, and a right rotation operation is applied in the decryption
process.

One could shuffle the original sequence according to an

encryption key, and the encrypted sequence is

 (bj)j∈J, (2)

where J = {1,...,n}. The encryption key is a bijective function f :
I → J, and it is an injective and surjective mapping of set I to

set J. In addition, we have bf(i) = ai for i ∈ I.

Similarly, the decrypted sequence is

 (ck)k∈K, (3)

where K = {1,...,n}. The decryption key is another bijective

function g: J → K which maps set J to set K. Furthermore, we
have cg(j) = bj for j ∈ J.

Since f is a bijection, it has an inverse function obtained by
swapping the inputs and outputs in f. Let g be the inverse

function of f, we have

 ai = bf(i) = cg(f(i)) = ci for i ∈ I. (4)

With the correct decryption key, it is apparent that the
decrypted sequence is identical to the original sequence.
Finally, the encrypted sequence and the decrypted sequence

can be converted to decimal representation.

Figure 2 provides a step-by-step explanation of the
proposed scheme using specific encryption and decryption

keys. The original value’s binary sequence is shuffled according
to the encryption key, and the encrypted sequence

corresponds to the encrypted value. By contrast, modifications
are reverted so that the decrypted value is the same as the

original value.

In the event of a brute-force attack, the adversary must

systematically enumerate all possible decryption keys and

check each of them. It is computationally infeasible to conduct
exhaustive key search for the following reasons. Firstly, there

are 32! ≈ 2.63e+35 unique keys. Thus the number of
candidate keys is large. Secondly, it is not straightforward to

validate whether the decrypted values are correct. Lastly, bit

shuffling provides a one-time pad system in which the

encryption keys in each request differ.

 Fig. 3. The balanced accuracies of each auxiliary attribute.

III. EXPERIMENTS

A. Background

Domain. We conduct experiments in the domain of person re-

identification, in which the objective is to retrieve a person of
interest across multiple cameras [7].

Datasets. We select the following datasets that are widely

used in recent works: Market-1501 [1], DukeMTMC-reID [2]
and MSMT17 [3]. Each dataset has three partitions, namely,

training set, query set, and gallery set. The latter two sets are
merged as the test set. Throughout this study, we use

MSMT17 as the proprietary dataset, while the local dataset is

either Market-1501 or DukeMTMC-reID.

Models. The FastReID repository provides an unified instance
re-identification library, along with a set of pre-trained models

[8]. We include three top-performing methods which are built

0.00

0.25

0.50

0.75

1.00
Random Guess

-1501.

0.00

0.25

0.50

0.75

1.00
Random Guess

using the ResNet50 [35] backbone, namely, BoT [6], AGW [7]
and SBS [8].

B. Recognizing auxiliary attributes

Model. For each auxiliary attribute, batch normalization [36]

layers and fully connected layers are stacked to obtain the

probabilities for each class. Similar to the proprietary models

that classify person identities, we use only one batch
normalization layer and one fully connected layer. Opting for
this structure gives the best results in our experiments.

Loss function. The cross-entropy loss [37] is utilized to solve
classification problems. Given an imbalanced dataset with
unequal distribution of classes, classifiers would be biased in

favor of the dominant classes. To address this issue, we assign
a scalar value to each class during training so that more

attention is paid to the under-represented classes [38]. The
class weights are inversely proportional to the count number

of occurrences of each class.

Evaluation metric. Conventional accuracy score measures the

percentage of samples in which the predicted label matches
the corresponding ground truth. However, it may give inflated

performance estimates on imbalanced datasets. Thus, we
adopt balanced accuracy [39] which is a better option, and it
reports the average of recall calculated on each class.

Analysis. We leverage the auxiliary attributes in [5], and these
annotations provide detailed local descriptions of pedestrians.
Multiple labels are present while each label corresponds to a

binary or multiclass classification problem. Figure 3 visualizes
the balanced accuracies of each auxiliary attribute in two local

datasets. Using feature vectors extracted by proprietary
models yields significantly more accurate classifiers than

guessing randomly.

C. Reconstructing user data

Model. Two sub-models are involved in reconstructing user

data, and we utilize the generator and discriminator, which
share similar architecture to the BigGAN [40] work. On the one

hand, the generator maps feature vectors extracted by a
proprietary model to images. Two fully connected layers
followed by a reshaping operation generate the smallest

feature maps, and five upsampling residual blocks increase the
size to the target resolution. The last convolutional layer

reduces the number of channels to 3, and the resulting
predictions are in RGB color space. On the other hand, the

discriminator classifies whether the images are original or

synthetic. Five downsampling residual blocks with a global

average pooling operation generate feature vectors of the
images. Complemented with the feature vectors extracted by

the proprietary model, a fully connected layer estimates the
probabilities based on the concatenated feature vectors.

Loss function. The generator can be optimized with a weighted

sum of the following loss functions: (1) The pixel loss [41]
calculates the mean squared error between the ground truth

images and the reconstructed images; (2) Given a pretrained

 (a) Samples from the test set in Market-1501. (b) Samples from the test set in DukeMTMC-reID.

 Fig. 4. Comparison of the reconstructed images using different proprietary models, local datasets, and loss functions.

model, one may extract an intermediate layer’s outputs as
feature maps. The feature reconstruction loss [41] refers to

the mean squared error between the feature maps of the
ground truth images and the reconstructed images. More

specifically, we use the outputs of layer ”conv2 block3 out” in
a ResNet50 [35] model which is pre-trained on ImageNet [42];

(3) The adversarial loss [43] measures how well the generator
can fool the discriminator when feeding the outputs of the

generator to the discriminator. By contrast, the discriminator
is trained using the mean squared error loss proposed in [44].

Compared with the cross-entropy loss [37], it suppresses the
vanishing gradients problem and stabilizes the learning

process.

Evaluation metric. For each reconstructed image, the ground

truth image is available. Instead of comparing these images
pixel by pixel, we extract the reconstructed images’ feature
vectors using the same proprietary model and calculate the

cosine distance between each feature vector pair. Note that

the cosine distance metric is widely used when comparing two

feature vectors in the inference procedure of person
reidentification models. If the reconstruction is identical to the

ground truth, it gives the minimum cosine distance 0.
Additionally, comparing the cosine distance scores gives

meaningful insights only if the proprietary model is the same,
i.e., one can not compare reconstructions generated from

different feature embeddings.

Analysis. Due to the constraints listed in Section II-A, it is

challenging to reconstruct user data precisely. Figure 4
illustrates the reconstructed images under various settings.
Using the pixel loss gives blurry predictions. Switching to the

feature reconstruction loss sharpens the images, while
noticeable checkerboard artifacts can be observed.

Nevertheless, such artifacts can be suppressed significantly by
adding the adversarial loss, and the reconstructed images

share strong similarities with the ground truth images.
Additionally, combining the feature reconstruction loss and

the adversarial loss results in the lowest cosine distance score
between feature vectors of the ground truth images and the

reconstructed images.

D. Importance of encrypting deep features

Results in Section III-B and III-C demonstrate that an

adversary could successfully infer sensitive information under
severe constraints. More specially, we manage to recognize

auxiliary attributes with decent accuracy and reconstruct user
data that are recognizable. In the presence of an encryption

scheme, one has to include an encryption key in each request,
and feature vectors in the corresponding response are

encrypted (see Figure 1). Since the decryption key is being kept
on the client side, the original values can be recovered without

changes. The adversary could still train threat models on
original feature vectors. However, the decryption key required

to decrypt feature vectors of user data is unknown to the
adversary, and threat models would not generate meaningful

predictions on encrypted feature vectors. Note that the users
and the adversary are using different encryption keys, and

such encryption keys may vary in each request. Therefore,
training threat models directly on encrypted feature vectors is

not an option.

While AES [45] is widely accepted as the de facto standard
for symmetric-key algorithms, the security of ShuffleBits is yet
to be validated. The following three characteristics of

ShuffleBits can be observed. Firstly, computations in
ShuffleBits are inherently operations on tensors. As a result, it

can be integrated into any neural network as a plug-and-play
module without extra dependencies. Secondly, a model with

ShuffleBits would output encrypted data directly, and only

encrypted data leaves GPU. It reduces the risk of exposing

unencrypted data. Thirdly, ShuffleBits can be seamlessly

applied alongside conventional encryption methods. An

adversary has to break all the encryption algorithms to get
useful information, and such cascade encryption pipeline leads

to better security.

IV. CONCLUSION

This study emphasizes the importance of encrypting deep

features in the case of deploying machine learning models.

Without a proper encryption scheme when transferring and

storing deep features, an adversary could recognize auxiliary
attributes and reconstruct user data, thus breaching user
privacy. Additionally, we introduce the ShuffleBits method,

which can be implemented as part of neural networks, and
only encrypted data leaves GPU. A natural extension of this

study would be to develop dedicated attacks against
ShuffleBits from the perspective of cryptography.

REFERENCES

[1] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person
re-identification: A benchmark,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 1116–1124.
[2] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance

measures and a data set for multi-target, multi-camera tracking,” in
European Conference on Computer Vision. Springer, 2016, pp. 17–
35.

[3] L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person transfer gan to bridge
domain gap for person re-identification,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 79–
88.

[4] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data

augmentation,” arXiv preprint arXiv:1708.04896, 2017.
[5] Y. Lin, L. Zheng, Z. Zheng, Y. Wu, Z. Hu, C. Yan, and Y. Yang, “Improving

person re-identification by attribute and identity learning,” Pattern
Recognition, 2019.

[6] H. Luo, Y. Gu, X. Liao, S. Lai, and W. Jiang, “Bag of tricks and a strong
baseline for deep person re-identification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2019, p. 0.

[7] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. H. Hoi, “Deep learning
for person re-identification: A survey and outlook,” arXiv preprint
arXiv:2001.04193, 2020.

[8] L. He, X. Liao, W. Liu, X. Liu, P. Cheng, and T. Mei, “Fastreid: A pytorch
toolbox for general instance re-identification,” arXiv preprint
arXiv:2006.02631, vol. 6, no. 7, p. 8, 2020.

[9] X. Ni, L. Fang, and H. Huttunen, “Adaptive L2 Regularization in Person

Re-Identification,” in 2020 25th International Conference on Pattern
Recognition (ICPR). IEEE, 2021, pp. 9601–9607.

[10] A. Kurakin, I. Goodfellow, S. Bengio, and others, “Adversarial examples

in the physical world,” 2016.
[11] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership

inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[12] F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing`

machine learning models via prediction apis,” in 25th $\{$USENIX$\}$
Security Symposium ($\{$USENIX$\}$ Security 16), 2016, pp. 601– 618.

[13] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for
formalizing model-inversion attacks,” in 2016 IEEE 29th Computer
Security Foundations Symposium (CSF). IEEE, 2016, pp. 355–370.

[14] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting

adversarial attacks with momentum,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 9185–

9193.
[15] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep

neural networks,” IEEE Transactions on Evolutionary Computation, vol.
23, no. 5, pp. 828–841, 2019.

[16] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example
defense: Ensembles of weak defenses are not strong,” in 11th

$\{$USENIX$\}$ workshop on offensive technologies ($\{$WOOT$\}$
17), 2017.

[17] Y. Long, V. Bindschaedler, and C. A. Gunter, “Towards measuring

membership privacy,” arXiv preprint arXiv:1712.09136, 2017.
[18] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine

learning: Analyzing the connection to overfitting,” in 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). IEEE, 2018, pp. 268–
282.

[19] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing
functionality of black-box models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4954–4963.

[20] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “PRADA: protecting
against DNN model stealing attacks,” in 2019 IEEE European Symposium
on Security and Privacy (EuroS\&P). IEEE, 2019, pp. 512–527.

[21] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, and M. Iyyer, “Thieves

on sesame street! model extraction of bert-based apis,” arXiv preprint
arXiv:1910.12366, 2019.

[22] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy
in pharmacogenetics: An end-to-end case study of personalized warfarin

dosing,” in 23rd $\{$USENIX$\}$ Security Symposium ($\{$USENIX$\}$
Security 14), 2014, pp. 17–32.

[23] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in

Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 1322–1333.

[24] Z. Yang, E.-C. Chang, and Z. Liang, “Adversarial neural network inversion
via auxiliary knowledge alignment,” arXiv preprint arXiv:1902.08552,

2019.
[25] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The secret revealer:

Generative model-inversion attacks against deep neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 253–261.

[26] A. Dosovitskiy and T. Brox, “Generating images with perceptual similarity

metrics based on deep networks,” arXiv preprint arXiv:1602.02644,
2016.

[27] ——, “Inverting visual representations with convolutional networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4829–4837.

[28] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural
networks using natural pre-images,” International Journal of Computer
Vision, vol. 120, no. 3, pp. 233–255, 2016.

[29] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K.

Kavukcuoglu, “Conditional image generation with pixelcnn decoders,”
arXiv preprint arXiv:1606.05328, 2016.

[30] H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N. K. Jha,

and J. Kautz, “Dreaming to distill: Data-free knowledge transfer via
deepinversion,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 8715–8724.

[31] H. Valpola, “From neural PCA to deep unsupervised learning,” in

Advances in independent component analysis and learning machines.

Elsevier, 2015, pp. 143–171.
[32] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:

Imagenet classification using binary convolutional neural networks,” in

European conference on computer vision. Springer, 2016, pp. 525–542.
[33] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830,

2016.
[34] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019

(Revision of IEEE 754-2008), pp. 1–84, 2019.
[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770–778.
[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[37] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for training

deep neural networks with noisy labels,” arXiv preprint

arXiv:1805.07836, 2018.
[38] S. Panchapagesan, M. Sun, A. Khare, S. Matsoukas, A. Mandal, B.

Hoffmeister, and S. Vitaladevuni, “Multi-task learning and weighted
cross-entropy for DNN-based keyword spotting.” in Interspeech, vol. 9,

2016, pp. 760–764.
[39] L. Mosley, “A balanced approach to the multi-class imbalance problem,”

2013.
[40] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high

fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.
[41] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style

transfer and super-resolution,” in European conference on computer

vision. Springer, 2016, pp. 694–711.
[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

large-scale hierarchical image database,” in IEEE Conference on

Computer Vision and Pattern Recognition. Ieee, 2009, pp. 248–255.
[43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–

2680.
[44] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. Paul Smolley, “Least

squares generative adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2794– 2802.

[45] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.

	I. INTRODUCTION
	II. PROPOSED METHOD
	A. Attack scenarios
	B. ShuffleBits

	III. EXPERIMENTS
	A. Background
	B. Recognizing auxiliary attributes
	C. Reconstructing user data
	D. Importance of encrypting deep features

	IV. CONCLUSION
	REFERENCES

