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“Comparative performance of sub-m positioning technologies in wearables” 

In a vast majority of positioning scenarios, the goal is to achieve seamless positioning with sub-m accuracy. 
In this deliverable, Viktoriia Shubina (ESR03) and Laura Fluerătoru (ESR08) provide a review and comparison 
of the accuracy levels for positioning technologies.  

Commonly, positioning is widely used on mobile phones, yet with the advancements in the Internet of 
Things (IoT), miniature sensors as wearable devices acquired the same functionality. Nowadays, these 
devices can sustain different wireless connectivity ranges: from ultra-short and short to long ranges. 
Therefore, the literature review in [1] compiles novel challenges with respect to the characteristics of mobile 
phones and wearables.   
 

1.1. Positioning Accuracy Metrics  
It is essential to define a proper error for the performance evaluation of the positioning method. There are 
two main approaches [2] to estimate the localization error of any system: 

• Error Probability refers to the probability of the measurement error to not exceed a specific value. 
• Cramer-Rao Lower Bound (CRLB) which is a lower limit for the variance of estimation. 

 
Erroneous data should be considered especially in situations with a massive number of IoT sensors to perform 
data processing in the IoT environment. This example highlights the need to estimate errors and allow data 
evaluation and data fusion at the second stage. 
Additional error-related metrics such as Positioning Error Bounds (PEB), Barankin bound, or Ziv-Zakai bound 
have also been used in some of the literature.   

1.2. Positioning Privacy Metrics  

As stated in [3], with the advancements of wearable technology and built-in sensors, accuracy confronts 
privacy, and vice versa. To balance efficiently the accuracy and anonymity, such metrics as entropy [4], k-
anonymity [4], l-diversity [5] and successors are used to evaluate the level of privacy of the positioning 
method in considered circumstances. Moreover, these metrics assist in creating and improving privacy-aware 
approaches used for localization to preserve users’ privacy.  

1.3. Localization techniques 
Localization systems typically employ techniques based on one or a combination of the following 
measurements: received signal strength (RSS), channel state information (CSI), angle of arrival (AoA), phase 
of arrival (PoA), and time of flight (ToF) of the signal (along with its multiple variants). 
 
RSS is relatively easy and cheap to acquire, but it can heavily fluctuate in multipath environments [6]. As a 
result, the signal strength can vary over time and frequency without being correlated with a particular 
location. CSI provides a more granular look at the RSS fluctuations. Fingerprinting methods commonly rely 
on RSS and CSI measurements associated with a particular location. 
 
AoA techniques measure the angle impinged by a signal on an antenna array and, based on information from 
multiple reference nodes with known locations, the position of a target can be computed [7]. This technique 
is hindered by multipath and non-line of sight propagation and requires more sophisticated equipment 
(antenna arrays) and signal processing algorithms. Similarly, measuring the PoA at a single antenna can be 
used to compute the distance traveled by the signal between two devices [8]. 
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Time-based methods use the propagation time of the signal to compute the distance between the tracked 
object and several reference devices. This class of techniques has tight synchronization constraints, since 
even small timing errors can lead to large errors in the computed distance. As a result, the equipment and 
processing are typically more sophisticated in the case of devices which use time-based methods. 
 

1.4. Comparison of Positioning Technologies 
Out of the existent localization technologies, WiFi, Ultra-Wideband (UWB), Bluetooth and Bluetooth Low 
Energy (BLE), ultrasound, visible and non-visible light, LoRa, and RFID are usually considered the most 
important enablers of localization in the IoT [9]. Table 1 presents a comparison between these technologies 
in terms of the maximum accuracy obtained by systems employing these technologies, their range, current 
consumption, localization techniques typically used with them, and their advantages and disadvantages. 
 
Table 1: Comparison of Positioning Technologies 

Technology Maximum 
accuracy*  Range 

Current 
consumptio

n 

Localization 
Techniques 

Used 
Advantages Disadvantages 

Wi-Fi Decimeter-
level [10], 

[11] 

250m 
outdoor 

50 m 
indoor 

Hundreds of 
mA 

Fingerprinting 
[12], AOA [10], 

TOF [11] 

Widely-available, 
low-cost, often does 
not need dedicated 

infrastructure. 

High-accuracy 
localization methods 

based on 
fingerprinting require 

extensive training 
and are prone to 
changes in the 
environment, 
relatively low 

accuracy. 
UWB Up to 10 cm 

[13], [14], 
[15] 

80 m – 
300 m 

30 – 150 mA TOF [13], [14], 
[15], AOA [16] 

High accuracy and 
precision, moderate 

cost. 

Not widely-available 
(yet), needs 
dedicated 

infrastructure. 
Bluetooth 85 cm [17] 100 m <30 mA  Fingerprinting 

[18], AOA [17] 
Widely-available, 

low-power. 
Relatively low 

accuracy, 
fingerprinting 

localization methods 
require extensive 

training. 
Bluetooth 
Low Energy 

2.5 m [19], 
[20] 

100 m <15 mA Fingerprinting 
[19], TOF [20] 

Widely-available, 
ultra-low power, 
protocol stack 

suitable for IoT. 

Low accuracy. 

Ultrasound Centimeter-
level [21], 

[22] 

20 m Low-Moderate  TOF [21], [22] High accuracy. Requires LOS, 
accuracy highly 

depends on the node 
placement. 

Non-visible 
light 

Sub-
millimeter 

[23] 

10 m N/A TOF [23] Very high accuracy. Requires LOS, sub-
millimeter accuracy 

technologies used in 
gaming are very 

expensive. 
Visible light Centimeter- 

or 
1.4 km N/A TOF [24], [25] Can use ambient 

light sensors 
Requires LOS, high-

accuracy solution 
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decimeter-
level [24], 

[25] 

commonly available 
in smartphones. [25] 

requires dedicated 
hardware. [24] 

LoRa Meter-level 
[26], [27] 

15 – 20 
km 

7 µA - 30 mA TOF [26], RSSI 
[27] 

Ultra-low power, low-
cost, long range, 

designed for the IoT 
and sensor 
networks. 

Relatively low 
accuracy. 

RFID Centimeter- 
and 

decimeter-
level  

[28], [29], 
[30], [31] 

Couple 
of 

meters 

Hundreds of nA 
– mA 

AOA [28], POA 
[29], RSSI [30], 

[31] 

Can consume ultra-
low power, low-cost, 

high accuracy. 

Passive RFIDs that 
achieve centimeter-

level accuracy 
require expensive 
infrastructure and 
cover small areas; 

active RFIDs support 
higher ranges but 

have only decimeter-
level accuracy. 

*Note: We refer to obtained, not achievable accuracy. 
 
3.1 List of repositories with positioning data 
 
Some examples of open-access datasets with location estimates can be found in Table 2. A particular choice 
of the right repository depends on the research interest and data format. 
 
Table 2: Open-access repositories with datasets for positioning 

Name Website 

Zenodo https://zenodo.org 
GitHub https://github.com 
Kaggle https://www.kaggle.com 
CRAWDAD https://crawdad.org 
European Data portal https://www.europeandataportal.eu/en 
Microsoft Research Open Data https://msropendata.com 
EUDAT B2SHARE (B2DROP) https://b2share.eudat.eu 
Harvard Dataverse https://dataverse.harvard.edu 
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