Biobased films and coatings for different applications

Juuso Toriseva and Johanna Lahti

Tampere University of Technology (TUT)
 Laboratory of Materials Science (MOL)

 Paper Converting and Packaging Technology (PCPT)

13.09.2018

Research group of **Paper Converting and Packaging Technology**

- The research group offers teaching and research on paper, paperboard and polymer processing, converting and packaging technology, materials (wood-, fibre- and plastic-based) and products.
- R&D is focused on (co)extrusion coating, laminating, dispersion coating, wet and melt spinning and their applications.
- The development challenges of today include high-barrier and thin coatings, materials from renewable resources and sustainable packaging materials.



Today's package development

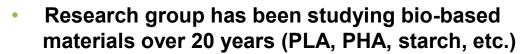
- Packaging materials are usually **multilayer structures** or "multimaterials"
 - "Less is more" optimisation of materials and material amount
 - Lighter packages save energy and environment
- **Circular economy**: biodegradability, compostability, environmentally friendly, recyclability, re-use...
 - Renewable alternatives for oil-based (nonrenewable) materials
- Demands for packaging industry (e.g.):
 - Internet shopping is increasing
 - Supply chains are evolving
 - Food losses should be prevented
 - Product safety/authenticity
 - Etc. Etc.

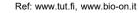
Current research topics

- High-barrier co-extruded coatings and films
- High-barrier paper and paperboard packages
- Biodegradable and bio-based coatings and materials
- Wood-based materials (e.g. lignin, cellulose) for various applications
- Active and intelligent packages solutions
- Surface functionalization of plastic films and fiber-based materials and their coatings
- Thin coatings and surface modification based on different techniques (ALD, Atomic Layer Deposition; LFS, Liquid Flame Spray; Atmospheric Plasma Deposition)
- Barrier dispersion coating

Examples of current projects

- Lubiss H2020 ITN (http://www.lubiss.eu/)
 - Explores the expansive potential of lubricant impregnated surfaces (SLIPS), focusing on three applications of high societal, environmental, industrial and medical impact: anti-icing, easy-to-clean and anti-fouling
- **A&I Packaging** (http://www.actinpak.eu/)
 - COST Action FP1405 ActInPak innovates and introduces fibre-based packaging materials and solutions with active and intelligent features
- BioBarr H2020 (http://www.biobarr.eu/)
 - Develops new bio-based food packaging materials with enhanced barrier properties. MINERV-PHA™ is based on renewable raw materials, and can be processed with existing extrusion equipment.
- Eucaliva H2020 (http://www.eucaliva.eu/)
 - Develops and sets-up a fully-integrated, energetically-efficient, scalable, innovative and flexible Lestävää kasvua ja työtä -on processing chain based on the valorisation of lignin for producing carbon fibres (CF) and other carbonbased materials.




Biopolymers from renewable raw materials for packaging applications

- MINERV-PHA™ studied in BioBarr project is based on renewable raw materials, *i.e.* produced from side streams of sugar production (sugar co-products).
- Polymer can be processed with existing extrusion equipment and is suitable for injection and extrusion methods for the production of coatings and objects.

http://www.biobarr.eu/

Kestävää kasvua ja työtä -ohjelma

From wood to cellulose and cellulose/lignin films

Biocelsol-process is an enzyme-catalysed water-based cellulose dissolution method without any hazardous chemicals.

Dissolving pulp is pre-treated with cellulose-specific enzymes

Pre-treated cellulose is dissolved into water-based sodium zincate solvent through freezing-melting cycle

> Films are formed with a lab scale hand coater and coagulated in mild sulfuric acid. Additionally, lignin can be incorporated into the films.

Cellulose/lignin film

Softwood

Treated by enzymes

> Dissolved into solvent

From wood to fibres by Biocelsol-process

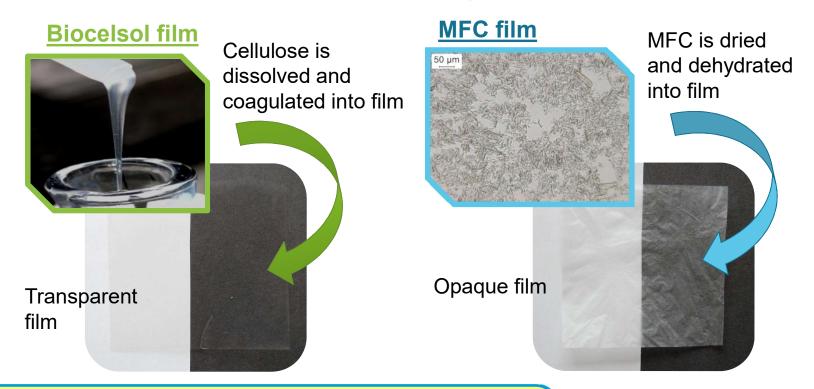
Dissolving pulp is pre-treated with cellulose-specific enzymes

Pre-treated cellulose is dissolved into aqueous alkaline solvent

Fibres are regenerated by wet spinning (utilizing the same machinery as the viscose process)

> Regenerated cellulose fibres are suitable for nonwovens and yarns and further for textile products

Softwood



Dissolved into solvent

From wood to cellulose and cellulose/lignin films

Cellulose as raw material:

- Abundant
- Renewable raw material
- Biodegradable

Cellulose films are:

- Biodegradable
- Non toxic
- Barrier to oxygen

Applications

Packaging etc.

ävää kasvua ja työtä -ohjelma

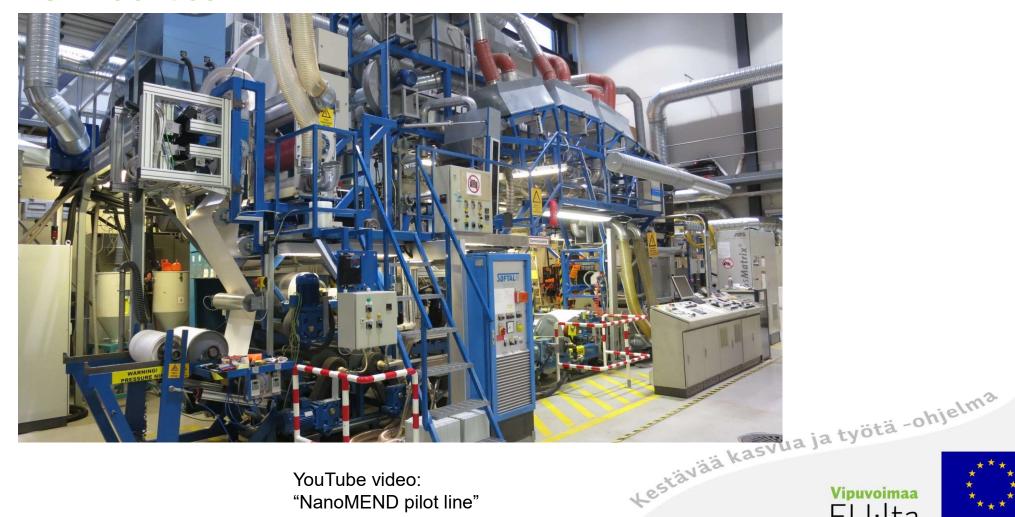
Oxygen permeability

Sample	Thickness, µm	OTR, ml m ⁻² day ⁻¹	Ref.
Cellulose	32 ± 2	8*	This work
Cellulose	32 ± 2	1**	This work
MFC	58 ± 6	3**	This work
Cellophane	21	3	а
MFC	21	17	b
Polyester	25	50 – 130	С
EVOH	25	3 – 5	С
Polyethylene LD	25	7800	С
Polyethylene HD	25	2600	С

Measurement conditions: *23°C / 50% RH / 10% O₂ **23°C / 0% RH / 100% O₂

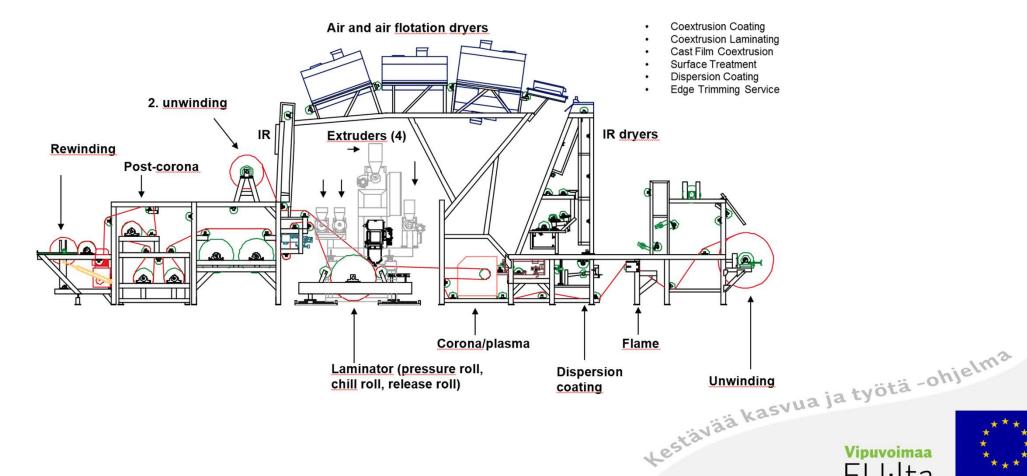
References:

This work, studies by Kamppuri T. & Lahti, J.


- Kjellgren and Engström (2006) Influence of base paper on the barrier properties of chitosan-coated paper. Nordic Pulp Pap Res J 21(5):685–689. DOI 10.3183/NPPRJ-2006-21-05-p685-689

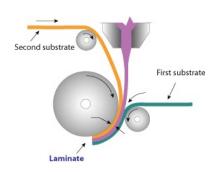
 Syverud and Stenius (2009) Strength and harrier property. a)
- b)
- Parry (1993) Principles and applications of modified atmosphere packaging of foods. Chapman & Hall, Suffolk c)

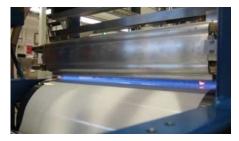
TUT Facilities

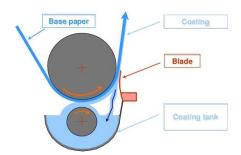


YouTube video: "NanoMEND pilot line"

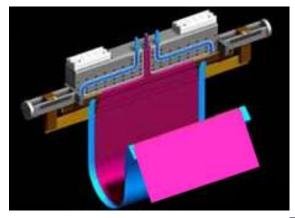
(co)Extrusion coating and lamination pilot line (TUT)



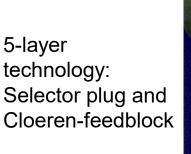

Processes available at the pilot line

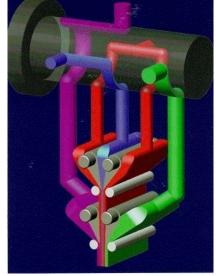

Versatile roll-to roll pilot-lines:

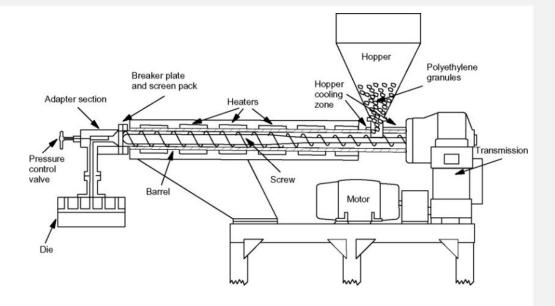
- (co)Extrusion coating and lamination
- 4 extruders, 5-layer technology, encapsulation possibility
- Dispersion coating (rod/blade)
- Surface treatments (flame, corona, plasma etc.)
- Max. line speed 400 m/min, max. substrate width 550 mm



New process being installed this year. R2R application of nanocellulose Kestävää kasvua ja työtä -ohjelma


Processes available at the pilot line



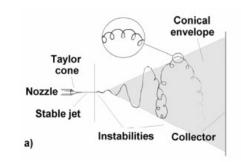

5-layer

technology:

T-die with encapsulation possibility

Plastics as pellets, dry

Prototyping for melt-, wet- and electrospinning in lab scale



Wet spinning:

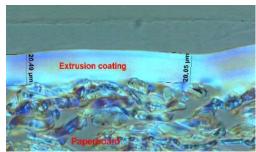
- For polymers that need to be dissolved in a solvent to be spun → not suitable for lignin as such; but suitable for example lignin/cellulose mixtures
- Capacity 10 1000 g fibres/day
- Several different spinnerets (e.g. 100X51µm; 2100x51 µm)

Electrospinning:

- For polymer solutions
- Horizontal electric field, Luer needle, copper collector
- Syringe pump can be used to control output
- Capacity 1-10 ml/day

Melt spinning:

- For thermoplastic polymers that can be melted
- Capacity 200 5000 g fibres/day
- Spinning velocities 10-800 m/min
- Max. spinning temperature 350 °C


Kestävää kasvua ja työtä -ohjelma

TUT Paper Converting and Packaging Technology Laboratory

- Two environmental test chambers (23-38°C / 50-90%RH, volume 120I)
- Permeability (barrier) measurements:
 - O₂TR: MOCON Ox-Tran 2/21 MH and Ox-Tran 2/21 SS
 - WVTR: MOCON Aquatran 1G and Cup test (ASTM E96-10)
 - CO₂TR: MOCON Permatran-C 4/41
 - Grease resistance (ASTM F119-82)
 - **HVTR**
- Dual column material testing machine: Strength properties and adhesion measurements (90° and 180°peel)
- Contact angle and surface energy
- Heat sealability:
 - Hot bar sealing and hot tack (KOPP SGPE 20 laboratory sealer)
 - Hot air sealing
 - Ultrasonic sealing

- Coefficient of friction (Qualitest FX7100-V)
- FTIR with ATR unit
- Optical microscope with polarisation contrast + microtome
- Extrusion rheometer
- Lab-scale sheet coater
- Brookfield viscometer
- Creasing perforating machine (Cyklos GPM4 50)
- Package testing:
- Hydrogen leak detector H2000
- PBI Dansensor CheckPoint Kestävää kasvua ja työtä -ohjelma

MOL/PCPT in BioÄly-project

Challenges

- Alternatives for fossil-based materials
- Use of renewable raw materials
- Reduction of resources and material costs
- Consumer awareness and circular economy

Results

- New materials and material combinations with enhanced and optimised properties
- Bio-based and sustainable products
- Source reduction and cost-effectiveness

Solutions

- Bio-based materials
 - Fiber-based (paper, board), wood-based (MFC, lignin), biopolymers (PHA, PLA, etc.), multilayer structures of these
- Development of sustainable processing methods and materials
- Laboratory testing and analysis of materials
 - Substrates, polymers, coatings
- Optimisation of processes (roll-to-roll pilot-line)
 - vestävää kasvua ja työtä. Coating, lamination and surface treatment trials

Thank You! Kiitos!

Project's Principal investigators:

<u>Johanna Lahti</u>, Sampo Tuukkanen, Tero Juuti,
Tomas Björkqvist, Matti Mäntysalo

Project staff:

Jari Keskinen, Jarkko Pakkanen, Sanna Siljander, <u>Juuso Toriseva</u>, Hanna Christophliemk, Arno Pammo

